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We have performed extensive experimental and numerical studies of spontaneous percolation of small beads
through an unconsolidated porous media made with large glass beads. In this paper, an experimental setup and
a fast “discrete element method” algorithm are presented to deal with large numbers of particles during our
interparticle percolation phenomenon studies. In all the experimental and numerical analyses, the size ratio
between the moving beads and the stable packing was chosen larger than the geometrical trapping threshold:
�c= � 2

�3
−1�−1=6.464. . .. We measure the longitudinal and transverse dispersion coefficients versus the height of

the porous medium or the number of falling small beads. The influence of bead properties such as density,
diameter, or restitution coefficients was investigated by using either steel or glass beads. The individual
description of these effects and their explanations were made possible by confrontation and coupling between
experimental and numerical results. Indeed, with our numerical model, individual analysis of the effects of
these mechanical or geometrical parameters were made possible and carried out.
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I. INTRODUCTION

Granular materials are present in several industrial activi-
ties as well as in civil engineering and environmental phe-
nomena. One important problem which often occurs when
manipulating granular materials is spatial separation of
grains according to their properties, commonly defined as
segregation. This phenomenon occurs mainly when grains do
not have the same size, the same shape, or the same density
�1,2�. This segregation leads to difficulty in realizing and
maintaining homogeneous mixtures of granular materials.
This problem has been intensively studied �3–9� as it is the
most frequently observed in industrial granular handling �2�.

Let us imagine a granular material with two grain species
which have very different diameters; it is obvious to observe
that the smaller grains can drain totally through the piling as
they are unable to obtain three stable contacts from the larger
ones. So, with such diameter ratio, size segregation can sim-
ply occur under gravity, without any external mechanical ac-
tion. It can be also described as a percolation problem.

In this paper, we will present results of our experimental
and numerical studies of the dispersion of a group of small
particles �as defined as a blob in the rest of the paper� due to
the percolation process. The aim of our study is to determine
which parameters are relevant for the interparticle percola-
tion process on longitudinal and transverse dispersions of a
particle blob. In all the paper, the longitudinal direction is
referred to the flow direction, and the transverse one is re-
ferred to the direction perpendicular to the flow direction. We
will focus on �a� the influence of the number of small par-

ticles inside a blob, �b� the size ratio between flowing par-
ticles and larger beads, �c� the different restitution coeffi-
cients �small-small or small-large�, and �d� the density of the
small particles. Section II will collect previous result studies
and used theories and will describe the control parameters.
Section III will present the experimental setup and our nu-
merical model, then it will explain theoretical and practical
approaches used in this paper. In Sec. IV, we will describe
the experimental results. Finally, Sec. V, will present the nu-
merical results and their comparison with the experimental
ones.

II. PREVIOUS STUDIES AND GEOMETRICAL
CONSIDERATIONS

The gravitational segregation approach was previously
studied in simple cases �10�, and also, some more complex
studies have been recently released �11–13�. Nevertheless,
these studies were limited to the launches of one or few
small particles at the same time in order to avoid any collec-
tive interaction between small grains.

A. Review of previous results

Recent study �14� has been carried out to explore flows of
small particle assemblies �or blobs� through a packing of
larger spheres. This study, which was focused mainly on the
influence of size ratio and the influence of blob size on the
mean transit time of flowing particles, demonstrates strong
modifications of flow behavior compared to the one-after-
one cases �11,12,15�. The influence of the restitution coeffi-
cient on the particle dispersion has been also investigated in
the case of isolated small beads as explained below �10�.
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Previous results �14,16� have shown that the mean transit
time of a set of falling particles is proportional to the height
of the packing. In other words, a steady state is reached after
the crossing of few grain layers and the flow of particles
occurs with a constant velocity. This quasi-steady-state be-
havior allows the use of the classical hydrodynamic disper-
sion model described later on in this paper. In consequence,
previous studies �14,17� have shown that a mean transit time
could be also determined, in a first approximation, by using

Ce
��t� =

1

2�1 + erf�V�t − �t	�
2�D
�t	

�� , �1�

where Ce
��t� is the elutriation profile. Equation �1� was suc-

cessfully used by Bridgwater and Ingram �15� in their study
of the percolation of single spheres injected one by one in a
porous medium.

Ippolito et al. �12� confirmed the diffusive properties of
the radial particle dispersion during flow through a packing
of larger spheres. By neglecting the longitudinal dispersion,
Bridgwater et al. �10� showed that the radial dispersion of
the particle increases with the increase in the coefficient of
restitution. This is in reasonable agreement with the tracer
dispersion model of Ranz �18�.

When dealing with disordered packing of spheres, it is
convenient to estimate extreme values of cavity or throat
sizes, which can help us to describe our experiments and
their results. So, the next section points out some crucial
definitions and key parameters based on geometrical consid-
erations.

B. Geometrical consideration

First of all, in order to model this percolation process, we
have chosen to use two simplifications: first, only spherical
particles will be used to model the large immobile porous
medium and the mobile small particles, and second, only two
particle species are used during one experiment which de-
fined one size ratio to compare moving and immobile par-
ticles. This solution is also used either experimentally or nu-
merically. This simplification can help us to define few key
geometrical parameters.

A first trivial parameter can be observed when we want to
define the diameter of the largest small sphere Dsmall, which
can pass trough any structural organization made with larger
spheres of diameter Dlarge.

The closest and smallest organization of these spheres is
the triangular one, made by three spheres mutually in con-
tact. In this structure we can determine the diameter Dsmall of
the fitting small sphere, which can sit inside such a triangle
formed with spheres of diameter Dlarge, with a critical size
ratio �c=Dlarge /Dsmall= � 2

�3
−1�−1=6.464. . . �19�.

The second smallest and densest structure is just the ex-
tension of the previous one to the three-dimensional space: a
perfect tetrahedral arrangement of four all together touching
spheres. We can also obtain the size of the largest small
sphere which can fit inside such a volume. Its diameter can
be determined from ratio �k=Dlarge /Dsmall= ��3

2 −1�−1

=4.45. . . �19�, but in practice such sphere is locked in the
structure and our study is not concerned with this case. Nev-

ertheless, the tetrahedral arrangement contains the smallest
cavity and it can be useful to estimate the maximum amount
of very small particles that can fit in it.

First, if we estimate the interstitial volume between four
spheres of diameter D in a tetrahedral arrangement, we ob-
tain a volume of D3

12 ��2−2�� as a characteristic volume of
the open space, where �=3 arccos�1 /3�−� is the solid
angle of the tetrahedron. By taking into account the well
known random close packing limit ��RCP=0.64� �20� in or-
der to have the maximum amount of small spheres, we can
define Vp=�RCP

D3

12 ��2−2��, as the volume occupied by the
percolating particles of diameter d inside the previously de-
fined volume. So, Vp is an estimation of the accessible vol-
ume of the smallest pore of the porous medium.

If N is the number of particles of diameter d injected
inside the porous structure, we can now consider the ratio
Np=V /Vp, where V=N 4

3�� d
2 �3 is the total volume of par-

ticles. In the rest of this paper, we will consider Np as one of
the key parameters to characterize our results. Indeed, in-
stead of dealing with different number N of particles and
diameter ratios, the parameter Np will let us describe the
phenomena in terms of number of filled pores. By the way, it
is also important to notice that Np is proportional to �d /D�3.

In practice, the size distribution of the inner sphere inside
these kinds of porous structures made with spheres starts at
the tetrahedral value 1 /�k and can reach a size up to 1, which
corresponds to an open space equivalent to the volume of the
constituting large sphere D. The shape of this distribution is
well known and always similar for disordered packings �21�.

III. EXPERIMENTAL AND NUMERICAL SETUPS WITH
THEIR ANALYSIS METHODS

A. Experimental setup

Our experimental setup, represented in Fig. 1, is made of
a Plexiglas cell of 26�26�51 cm3 filled with a packing of

������������������������������������������������������������������������������������������������������������������������������������������������
������������������

h

H

bead dispenser

porous medium

piezoelectric scale

grid
drawer

computer

collecting box

FIG. 1. Schematic description of the experimental setup. The
small bead dispenser is placed at h from the top of the porous media
of an height H. The collecting box is put on the scale.
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monosize glass beads of diameter D. This packing, which
constitutes a porous medium of height H, is built by random
gravity deposition of the beads. This procedure gives a re-
producible porosity around 0.4 �22�. Another packing of
small particles of diameter d is placed in a bead dispenser,
which is set to a distance of h=2.6 cm above the top of the
porous medium. These particles are quasi-instantaneously
launched on the top of the porous structure by using a verti-
cal opening hatch. The distance h is then set equal to the
length of a half gate of the hatch.

As already mentioned, we will work with a ratio D
d ��c in

all our studies. This threshold ratio, defined in Sec. II B,
permits to any particle to pass freely through any pore of our
porous medium. The detection system consists of two parts.
First, we place under the porous medium a piezoelectric
scale which records the accumulated amount of beads which
succeeded to pass through the porous medium. This mea-
surement will let us determine the time integral of the distri-
bution of particle transit time at the exit of the porous me-
dium. So, this analysis gives access to the mean transit time
of the particles. Second, at the exit of the porous structure,
we place a collecting box which divides the transverse plane
into 400 square cells of 10 mm length side. Each square cell
is keep larger than the flowing particle size in order to really
measure local information �i.e., averaged over few small
bead diameters�. In order to let the particles exit the porous
medium, the packing of larger spheres is supported by a grid
with appropriate mesh size. Samson �11� showed that such
grid does not influence flow properties. The number of par-
ticles in each cell is then deduced from the collected mass.
These local measurements give the particles transverse posi-
tion distribution. In order to really measure the transverse
and longitudinal dispersions, we avoid taking into account
particles that would be able to reach the walls of the Plexi-
glas cell. This is achieved by restricting the measured vol-
ume to a window with an horizontal circular hole of 20 cm
diameter, which corresponds to the size of the collecting box.
If particles reach the walls of the Plexiglas cell, they are
trapped in the hole drawer. So, practically, we have adjusted,
in each experimental set of runs, the height H of the packing
in order to reduce the number of trapped particles.

In all experiments, we use glass beads of diameter D
=16 mm and mass mL=5.37 g to build the porous medium.
Percolating particles used are steel beads with d=1 mm of
mass ms=4.07�10−3 g. Some experiments are also realized
with 1-mm-diameter glass beads of mass ms=2.1�10−3 g.
We rebuild both packings for each experiments.

B. Numerical setup and model

Complementary to our experimental device, we have de-
veloped a numerical algorithm to fulfill our experimental
study. Our program is based on “discrete element method”
�DEM�. In this section, we present our numerical model: the
packing creation, the molecular-dynamics �MD model� ap-
proach, and the improvements made for efficiency when
seeking for collision partners.

1. Packing creation

The first step for studying falling spheres through a po-
rous medium is to build the large porous structure. The sim-

plest and fastest porous structure is obtained by a random
piling of large spheres. Several models for the construction
of random packings exist; in order to build numerical stable
packings with a controlled porosity; we have chosen the
Powell’s algorithm �23�. The key of this algorithm is to se-
lect randomly the two �for the first bottom layer� or three
lower contacts from already placed spheres. This set of con-
tacts let us determine the coordinate of the new sphere. Ob-
viously, the new sphere positions are invalidated if there is
an overlap with another already placed sphere or if its height
does not fit inside a thin screening moving up layer. Then,
we seek other candidates to ensure the placement.

This technique can accept also transverse periodic bound-
ary conditions in order to avoid wall effect �i.e., local high
porosity�. In conclusion, this algorithm models to some ex-
tent sphere depositions under gravity, which corresponds
rather well to the method used for the experimental prepara-
tion of our packings as described previously: for both the
porous one made with large spheres and the blob one made
with the small beads. In our simulations, the packing fraction
� of the packing is about 60% which leads to a porosity of
40%.

2. DEM: MD model of soft spheres

As we have achieved the creation of the two bead pack-
ings: the porous structure and the blob packing, we need to
model the dynamic part of our experiments. During basic
observations of the beginning of the experiments, we have
seen that the moving particles present enduring contacts,
which excludes the use of the “event-driven” model of the
DEM. Indeed, this approach deals only with instantaneous
binary collision between two particles �24,25� and can lead
to spurious artifacts �26–28�. We will use a model based on
“molecular dynamics of soft spheres” approach �29–31�. In
the algorithm presented below, due to large size ratio be-
tween the two kinds of spheres, gravity force only acts on
small particles. Figure 2 illustrates classical collision be-
tween two soft overlapping spheres i and j and defines nota-
tions that are used in this paper.

FIG. 2. Illustration of contact between two soft overlapping
spheres i and j in the MD approach. Notations used in this paper are
also mentioned.
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MD model assumes that repulsion forces between two
spheres in contact are proportional to the overlap � between
spheres i and j at the positions Ri and Rj with radii ri and rj,
respectively, �=Ri+Rj − �ri�−rj�� ·n� , where n� is the normal unit
vector. Several models of normal and tangential forces exists
in the literature �29,32–36�. We have chosen to use the
widely sprayed “linear spring dashpot” �LSD� model
�30,37–39� for the normal force and the Cundall and Strack
�29� model for the tangential force. With these models, nor-
mal and tangential forces are modeled, respectively, by

Fnji
= kn� + 	n�̇ , �2�

Ftji
= − 
 min�kt�,�
Fnij


� , �3�

where kn is a stiffness coefficient, �̇ is the time derivative of
�, and 	n is a damping constant. � is the tangential overlap
defined by

� = �
t

t�

t� · d�l , �4�

where � is the friction coefficient and t and t� are the two
overlap limits. kt is a tangential stiffness coefficient which is
assigned, in order to ensure a correct energy restitution, to a
value of

kt =
2

7
� �2 + �ln et�2

�2 + �ln en�2�kn, �5�

where en and et are normal and tangential energy restitution
coefficients. t� is the unit tangent vector. The symbol 
 takes
the values �1 according to the sign of tangential relative
velocity. Two kinds of collisions are involved in our experi-
ments. The first one is a collision between a small moving
bead and a large immobile one, and the second one is a
collision between two percolating moving particles. The res-
titution coefficients of these two kinds of collisions will be,
respectively, denoted e1 and e2 in the rest of this paper.

In order to integrate the equations of motion for the de-
termination of the positions and velocities at time t+dt, we
need to adapt the time step dt. Generally, dt is taken to be
equal to dt=min�tc� /100, where tc is the contact duration
between i and j at time t. With the LSD model, the contact
duration �n �defined by the existence of an overlap�, in nor-
mal direction is �n=��

kn

mij
− �

	n

2mij
�2�1/2. If Eq. �5� is satisfied,

we have �n=�t, where �t is the contact duration in tangential
direction, and then we have tc=�n. The time integration is
performed using a Verlet’s algorithm �40�. In spite of the
periodicity of the porous medium generated with the Pow-
ell’s algorithm, interactions between moving spheres do not
take into account these periodicity �i.e., only small sphere in
the same periodic space can collide�.

3. Algorithm efficiency

The computation time is controlled by two main loops:
one over the number of moving spheres and another one for
the determination of the neighbors for each sphere. As a
classical DEM simulation, the system is divided in cells in

order to reduce the number of possible available neighbors
which have to be tested by the program. For each grid of
cells, a linked list is associated. These linked lists permit us
to easily identify particles that are in the same or adjacent
cells and avoid looping over all particles. Indeed, in the
linked-list method, each sphere links to another sphere which
is in the same cell �41�. But this method needs to have small
number of particles in each cell to be efficient. For that, a
common method is to set the cell size smaller as possible but
in the order of few large sphere diameters D. During our
spontaneous percolation experiment, the particles of diam-
eter d are very small compared to this cell size. So despite
the previous cell size optimization, the number of small par-
ticles can be very important in each cell, and by consequence
this cell method losses partially its efficiency.

In order to remedy to this problem, our first improvement
is to use two cell grids for achieving desired performances: a
large grid for the spheres building up the porous media and a
smaller one for the moving particles. This permits us to re-
duce the number of small particles in the corresponding grid.
By consequence the search of possible overlaps is divided
into two steps: first, we look for contacts between two small
particles within the associated grid and linked list; then, we
look for contacts between a moving particle and a sphere of
the porous medium with the other corresponding grid and
linked list.

In the linked-list method, it is necessary to adjust the links
between particles that are localized in the same cells when
the particles have moved in or out of a given cell. As only
small particles can move, only one linked list is concerned.
But as the number of cell can be very important, the full
reinitialization of this list, at each time step, needs too much
time. To avoid this time consumption, we have implemented
a doubly linked-list �16� which constitutes a great improve-
ment compared to the traditional linked-list method. In our
method, each sphere links to another sphere which is in the
same cell and each linked sphere has also a reverse link �to
identify the sphere which makes a link to it�.

With this method, it is easier to update the linked list and
the list of spheres contained in each cell without global reini-
tialization. When a particle moves in or out of a cell, only
links and reverse links of this sphere and the ones of linked
and reversely linked spheres have to be changed.

The third improvement used in our simulation was to
make a parallel version of our code with message passing
interface �MPI� coding in order to ensure good performances
for a relative high number of particles. Indeed, each moving
sphere calculation is limited to their neighbors so it is very
easy to divide the global calculi in a subset of small number
of spheres calculated by each MPI processes.

Most calculations were performed on 64 bit architectures
at 1.8 GHz. For a duration example, a simulation of N
=1000 particles in a packing with H /D=14 and size ratio
D /d=10 running on a single processor takes approximately
10 and 5 h if using two processors. The same simulation with
D /d=6.5 can take twice. When the number of falling par-
ticles increases, simulation can take a very long time. For
example, with N=10 000 or more, the simulation can run
during two or three weeks on a single processor. Thanks to
parallelization, this time can be divided by the number of
processors.
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C. Theoretical and practical approaches

The two previous sections, describes, respectively, our ex-
perimental setup and the numerical program used to perform
the study of interparticle percolation of small particles
through an unconsolidated porous medium. In classical hy-
drodynamics dispersion process, few quantities are generally
measured or observed. Depending of the ability of inner
measurements or not, we can obtain local or global values of
some physical quantities. With the experimental device pre-
sented previously, it is only possible to determine the mean
transit time of the particle blob and particle dispersions. But
depending on the setup considered �experimental or numeri-
cal one�, the way to determine these quantities can be differ-
ent. The aim of this section is to define our measurement
protocol and to review accessible quantities for these two
setups.

1. Determination of experimental dispersion coefficients

Our experimental device does not permit us to follow tra-
jectories of particles inside the porous structure. Neverthe-
less, the collecting box placed under the packing of the larger
spheres was built in order to investigate the transverse dis-
persion of particles. The distribution function of the particle
exit positions requires counting the number of particles in
each cell of the collecting box. This is done by weighting of
the mass contained in each cell of the collecting box. We
have to point out that these measurements need a quite long
time compared to the experiment duration. If we launch a
blob of particles, each cells i of the collecting box placed
under the porous medium have a mass mi�xi ,yi� of particles,
and we can define the distribution particle function pi�xi ,yi�
by

pi�xi,yi� = pi =
mi�xi,yi�

�i
mi�xi,yi�

, �6�

where xi and yi are positions of the center of the cell i in the
plane perpendicular to the flow direction.

We can easily assume that the transverse distribution
function is roughly homogeneous and reproduces the hori-
zontal isotropic properties of the porous medium. In conse-
quence, it is convenient to define the particle position distri-
bution function only in one dimension r without an
azimuthal component. For each particle, we have ri

2=xi
2+yi

2.
So, the variance ���r�2	 of the position distribution is re-

lated to the transverse dispersion coefficient D� by

���r�2	 = �
i

pi�ri − �r	�2 = 4D�t . �7�

As we have already mentioned in Sec. II A, Lominé and
Oger �14� put in evidence the existence of stationary regime
with constant velocity V during flow of particles. If we define
a mean transit time by

�t	 =
H

V
. �8�

Then, Eq. �7� can be written as

���R�2	 = �
i

pi�Ri − �R	�2 = 4D�

H

V
, �9�

where R is the position of particles at the output of the po-
rous structure. So Eq. �9� let us determine the transverse
dispersion coefficient D�.

The main phenomenon, which occurs inside the porous
space, is longitudinal and transverse dispersions that is clas-
sically described using an advection-dispersion equation
�ADE� approach. With this consideration, the concentration
C�r , t� of particles follows the equation �42,43�

�C�r,t�
�t

+ U � C�r,t� = D


�2C�r,t�
�r


2 + D�

�2C�r,t�
�r�

2 , �10�

where C�r , t� is the particle concentration at position r at
time t, U is the interstitial velocity of the flow, and D
 and
D� are, respectively, the longitudinal and transverse disper-
sion coefficients. It should be noted here that Eq. �10� is a
continuum approximation of a discrete phenomenon. Van
Genuchten et al. �44,45� showed that if we consider Eq. �10�,
in one dimension z, an analytical solution for a semi-infinite
system and for a continuous injection �C�0, t�0�=C0�, with
initial conditions C�z ,0�=0 and �C��,t�

�t =0, is

Ce�z,t� =
C0

2 �exp� zV

D

�erfc� z + Vt

�4D
t
� + erfc� z − Vt

�4D
t
�� ,

�11�

where V is the mean velocity.
A solution of Eq. �10� for an instantaneous injection,

which is our case studies, can be obtained by the differentia-
tion with respect to time of Eq. �11�. Therefore, Eq. �11�
corresponds to the time integration of the transit time distri-
bution for an instantaneous injection. Despite the simplicity
of the model, Eq. �11� let us determine the dispersion of
particles in the flow direction. As we will see in Sec. IV A,
the adjustments of transit time distributions at the exit of the
porous medium are well fitted with Eq. �11�, and more so-
phisticated models will not help to improve accuracy of these
adjustments. Then, it is possible to access the longitudinal
dispersion coefficient D
 by considering the time integration
profile of particle transit time distribution and Eq. �11�.
Equation �11� could also be used to determine the velocity V
or the mean transit time via Eq. �8�, which could be also
determined with Eq. �1�. The observed differences of the
mean transit times determined with these methods will be
discussed in Sec. IV A.

2. Determination of numerical dispersion coefficients

Numerically, it is possible to access individual particle
positions, anywhere at any time, inside the packing of larger
spheres. Then, contrary to experimental case, variance can be
evaluated at every time during the grains fall. If we note rk,
the position of a particle k in the horizontal plane in such
way that rk

2=xk
2+yk

2, where xk and yk are the particle posi-
tions, we can deduce the position fluctuations. So the vari-
ance of the position distributions of the N moving particles in
this plane is
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���r�2	 =
1

N
�
k=1

N

�rk − �r	�2, �12�

where �r	= 1
N�k=1

N rk. In the same manner, if the particle posi-
tion in the flow direction is denoted by zk, we have

���z�2	 =
1

N
�
k=1

N

�zk − �z	�2, �13�

with �z	= 1
N�k=1

N zk.
Then, in numerical case, the two dispersion coefficients

D� and D
 will be deduced from time evolution of ���r�2	
and ���z�2	 with classical relations

���r�2	 = 4D�t and ���z�2	 = 2D
t . �14�

IV. EXPERIMENTAL STUDY

With the experimental setup presented previously in Sec.
III A, we have performed experiments to determine disper-
sion coefficients. When a blob of N particles is free to fall on
the surface of the packing made of larger spheres, particles
flow through the porous medium and disperse due to colli-
sions with the porous matrix.

A. Transverse dispersion

Experimentally, it is possible to access particle dispersion
at the exit of the porous medium. For example, Fig. 3 illus-
trates the particle distribution function for a launch of 10 000
glass particles.

To determine transverse dispersion coefficient D� with
Eq. �9�, it is first required to measure V, the mean velocity
which is related to H / �t	, where �t	 is the mean transit time.
For that purpose, we have done several launches of particles
for various number N and various heights H of the packing.
Using Eq. �11�, it is possible to fit the time integral profile of
the time transit distribution gathered by the piezoelectric
scale. Figure 4 shows the evolution of particle mass collected

under the packing of larger spheres, with respect to time for
two values of N. The values of corresponding Np are also
indicated. We have drawn also the best fits of the experimen-
tal profiles using Eq. �11�.

In spite of the simple hydrodynamic model used here �Eq.
�10��, the agreements between Eq. �11� and experimental
data, show that the time integral profile of the transit time
distribution is very well fitted by this equation. These adjust-
ments where done by using unweighted least-squares fitting
method and letting all parameters, in Eq. �11�, free to adjust.
The value of z at the end of adjustment was found to match
the H values in all cases. Nevertheless, adjustments were
also done by fixing z to H and letting all other parameters
free to being adjust. In this case, final values of V and D


were found to be very closed to the values obtained without
fixing the z parameter. Moreover, more sophisticated
advection-dispersion models �including retardation factor
�Re�, general first-order deposit factor �K�, and an injection
source �	�� �44,45� were investigated without giving notice-
able differences compared to the use of Eq. �11�. Indeed,
small differences on values V and D
 observed with these
models were found to stay in incertitude between two dis-
tinct experiments. The general form of the advection disper-
sion equation which was also tested is

Re
�C�z,t�

�t
− D


�2C�z,t�
�z2 + V

�C�z,t�
�z

+ KC�z,t� + 	 = 0.

�15�

Nevertheless, Eq. �11� remains the simplest and best ad-
justment law for fitting elutriation profile of our experiments.
Moreover, in order to complete this already good accuracy
and to have better reliable data, each experimental data point
presented in this paper is a statistical mean of at least ten
fully independent experiments �i.e., newly built large and
small packings�. We also present incertitude determined with
largest fluctuations between experiments. Incertitudes due to
all hydrodynamical models used are also incorporated.

Figure 5 shows evolution of mean transit time with H /D.
Linear fits, determined with unweighted least-squares
method, are also represented. Results have been obtained for
different particle blobs. As already seen in �14�, the mean
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flow velocity depends on the number of particles that travel
inside the porous space. From the slope of the mean transit
time versus the height of the packing, we can deduce the
mean flow velocity V of the falling particles.

Using the first part of Eq. �9�, we have determined the
variance of transverse particle distributions at the output of
the porous medium versus the packing height of the larger
spheres. Figure 6 shows the results obtained for different sets
N of small steel and glass spheres of d=1 mm diameter. We
can observe that ���R�2	 is proportional to the height H of
the porous medium and then follows the second part of Eq.
�9�.

Figure 7 shows the transverse dispersion coefficients, de-
termined by Eq. �9� for the different set sizes of the small
particles versus the scale factor Np. Two kinds of particles
were studied: steel or glass beads. This curve shows clearly
that the transverse dispersion increases with the number of
particles flowing through the packing of larger spheres. The
larger particle blobs are, the bigger is the “dense kernel” of
the particle cloud. So, near the surface of this “kernel,” the
ejections of the moving particles toward less dense regions is
facilitated. The increase in that surface versus Np and, by
consequence with the number of particles N, can explain the
results observed in Fig. 7. Indeed as observed by Lominé and
Oger �14�, an individual particle, similar to the one on the
cloud periphery, has a higher transit time due to a more im-
portant transverse exploration of the porous medium, com-

pared to a particle with an important neighborhood. This
phenomenon results in an higher dispersion coefficient.

Despite the fact that only few points of measurements
were present for glass beads, it is possible to notice that the
values of transverse dispersion coefficients for the small
glass beads are higher than for the steel ones. At this stage, it
is not possible to explain truly the reasons of these large
values, however we can only express several possibilities, as
the change in the moving bead properties results in modifi-
cations of many physical and mechanical parameters. The
modification of surface properties is our first assumption and
can produce different friction coefficients. This assumption is
possible but seems not so efficient as the flow of particles is
essentially made by ballistic movements and instantaneous
collisions. The second assumption is more evident and can
be expressed as the change in the particle density �from
7.8 g cm−3 down to 2.5 g cm−3 for steel and glass beads,
respectively�. So, glass particles are less subject to gravity
force due to their lower density. This generates a smaller
acceleration force during the falling trajectories between two
consecutive layers and, by consequence, changes the ability
to explore laterally the porous space. The last possibility
which can explain this increase in the transverse dispersion
coefficient is the change in contact properties and more pre-
cisely the restitution coefficient with the spheres of porous
medium or between two falling particles. This assumption
seems crucial for our studies; but in practice, it is impossible
to change this restitution coefficient without changing also
some other properties of the beads. This is the reason why
the influence of energy dissipation will be one of the main
key factor studied later, through our numerical simulations.
In the same manner, we will analyze also the effects of the
density of the percolating particles independently of the
other parameters.

B. Longitudinal dispersion

We have already mentioned that, with the use of Eq. �11�,
it is possible to determine the longitudinal dispersion coeffi-
cient by fitting the time integration profile of transit times,
obtained at the exit of the porous medium. For the small steel
beads falling through a packing of larger glass spheres, we
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have determined the longitudinal dispersion coefficients ver-
sus the different sizes of particle blobs. Figure 8 shows evo-
lutions of these coefficients with the parameter Np, for three
heights H. We can observe that the dispersion coefficient
increases with Np �i.e., the number of particles N�. When Np
is larger, more neighboring pores are occupied by the moving
beads at the same time. This situation can be translated as a
smaller probability for the moving particles to find rapidly a
possible vertical path, which results in a larger dispersion of
particles in the longitudinal direction. Figure 8 shows also
that the dispersion coefficient measured for H /D=5 differs
from those measured for H /D=10 and for H /D=14.4. This
difference demonstrates that an intermediate state in the top
layers of the porous medium �around H /D=5�, is not negli-
gible for the study of the rest of the flow. This different
behavior is due to the particle rebounds on the surface of the
porous medium �recall that the dispenser is h=2.6 cm above
the top layer of the porous medium� and also due to the
transition phase which occurs in the first few layers. This
second effect can be described as an equilibrium zone where
the falling particles collide rapidly with each other and with
the first layers of large spheres.

V. NUMERICAL STUDY

As mentioned previously, some parameters are experi-
mentally impossible to modify independently of other ones.
This is the reason why numerical simulations of our experi-
ments is useful to complete our analysis of the interparticle
percolation phenomenon.

We present the numerical results of our simulations, ob-
tained with the program presented previously in Sec. III B,
of the flow of a blob of small particles through a porous
medium. As illustrated by the series of snapshots presented
in Fig. 9, numerical simulations let us have also access to
positions of particles inside the porous space. In order to be
as close as possible to real experiments, density of small
particles �s has been taken equal to 7.8 g cm−3, and we
choose a value of 2.5 g cm−3 for the density �l of the glass
spheres. Moreover, as the experimental setup, we rebuild
each packings for each simulation. Each numerical data

which are presented in this paper are coming from a statisti-
cal mean of several simulations. Error bars can be deduced
from these replicate simulations.

A. A diffusive process

Figure 10 presents variances, ���r�2	 and ���z�2	 calcu-
lated with Eqs. �12� and �13�, of particle position distribution
for N=8000 versus time. In this figure, the linear fits ob-
tained by the unweighted least-squares method are also rep-
resented. We can notice that this linear evolution of the two
variances with time is a typical proof of a diffusive property.
The deviation from the linear regression observed for larger
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values of t is mainly due to the finite size of our simulations.
Indeed, at long time, some particles have already reached the
bottom of the porous medium which implies that the calculus
of ���r�2	 and ���z�2	 are less and less accurate. In the other
limit, for the small values of t, we can also observe a devia-
tion from the fits in Fig. 10 which can be explained by the
time needed to reach a diffusive behavior and already men-
tioned in Sec. IV B for small H /D. Diffusive motion of an
isolated falling particle was observed by Ippolito et al. �12�,
and our simulations prove the same behavior for a blob of
particles. This fact confirms our assumption on the diffusive
behavior mentioned for our experimental results.

B. Effect of blob size Np

In the previous section, we have demonstrated that we can
deduce the dispersion coefficients from our numerical simu-
lations. So right now, we can analyze the coefficients D
 and
D� for various numbers of injected particles, expressed
through the parameter Np, into the packing of large spheres.
As we have previously seen in Sec. II B, Np will let us de-
scribe influence of N in terms of number of filled pores.
Figure 11 shows these two coefficients versus Np for experi-
ments with D /d=10 and H /D=14.

Figure 11 reveals that the transverse dispersion coefficient
D� does not truly depend on the number of injected par-
ticles. On the other hand, we can notice that the dispersion
coefficient D
 in the flow direction increases with the number
of particles. In order to compare with our experimental re-
sults �size ratio D /d=16� we have also represented the be-
havior of these two dispersion coefficients in this case �see
Fig. 12�.

Unlike the results presented in Fig. 11 and despite rela-
tively large incertitudes in Fig. 12, we can notice that the
transverse dispersion coefficient D� increases with Np. This
evolution is in good agreement with the experimental results
presented in Fig. 7. By making a comparison between Figs.
11 and 12, we can also notice that D
 for Np�50 is smaller
when D /d=16 than the one for D /d=10. So, it is obvious
that the particle dispersion depends on size ratio D /d. Then
the next section will present the ratio D /d influence.

C. Effect of size ratio D Õd

Dependency of D� on size ratio D /d, observed between
Figs. 11 and 12, is confirmed in Fig. 13 which represents the

evolution of D� with D /d for different particle numbers N.
This figure demonstrates that, when the size ratio is lower

than 12, D� increases with D /d. Incertitudes between simu-
lations does not allow us to determine a significant depen-
dency of D� on N for D /d�12, which is in agreement with
results of Fig. 11. The smaller the particles are, the more they
can laterally move along long distances. When size ratio is
higher than 12, we can notice that the global behavior of D�

is nearly constant around D�=4 cm2 s−1, but we can see a
larger fluctuation of D� with N. This is comparable to Fig.
12.

In the same way, we have represented in Fig. 14 the evo-
lution of longitudinal dispersion coefficient D
 versus the
size ratio D /d. When the size ratio is small �D /d�9�, par-
ticles have difficulties to pass trough the packing of larger
spheres, and this fact results in large fluctuation of the dis-
persion coefficient in the flow direction. Indeed for such size
ratio, the particle blob needs more time to reach the steady
state with constant velocity and determination of the slope of
���z�2	= f�t� is less accurate than for D /d�9 cases.

We can observe that the longitudinal dispersion coeffi-
cient D
 fluctuates in opposition to the transverse one: D


decreases when the size ratio increases up to the ratio D /d
=12, then remains constant as D� when D /d is larger. These
two evolutions can be easily explained as a basic transfer of
movements between the two kinds of displacements: when
D /d is small, the particles have a smaller probability of mov-

0 50 100 150 200 250 300
N

p

0

2

4

6

8

10

12

D
||

an
d

D
⊥

(c
m

2
s-1

)
D

||
D⊥

FIG. 11. Evolution of dispersion coefficients versus Np for a size
ratio D /d=10. These results have been obtained with H /D=14,
D=20 mm, e1=0.84, and e2=0.99. Error bars are also represented.

0 10 20 30 40 50 60
N

p

3

3.5

4

4.5

5

5.5

6

D
||

et
D

⊥
(c

m
2

s-1
)

D
||

D⊥

FIG. 12. Evolution of dispersion coefficients versus Np for a
size ratio D /d=16. Error bars are shown for accuracy analysis.
Results are obtained with H /D=14, D=20 mm, e1=0.84, and e2

=0.99.

6 8 10 12 14 16 18 20
D/d

0

1

2

3

4

5

D
⊥

(c
m

2
s-1

)

N = 1 000
N = 2 000
N = 5 000

FIG. 13. Evolution of D� versus D /d for different values of N.
The results are obtained with H /D=14, D=20 mm, e1=0.84, and
e2=0.99. To improve the readability, only significant error bars are
displayed.

DISPERSION OF PARTICLES BY SPONTANEOUS… PHYSICAL REVIEW E 79, 051307 �2009�

051307-9



ing outside a pore in the horizontal direction and thus a
greater probability of passing through the vertical pore. By
opposition, if they can move freely laterally �i.e., inside or
outside horizontal pores� they have lower probabilities to
have larger fluctuations in the vertical directions.

D. Effect of the restitution coefficients e1 and e2

We have performed a series of simulations to study the
influence of the two different energy restitution coefficients
�small-small or small-large� on particle dispersion. Figure
15�a� shows the transverse dispersion coefficients D� for
different particle blob sizes. The results show that D� is
almost independent of the restitution coefficient e1, where e1
is the coefficient for a collision between a moving particle
and a sphere of the porous medium.

In the same manner, the evolution of the longitudinal dis-
persion coefficient D
 versus e1 is illustrated in Fig. 15�b�.
We can summarize these evolutions by noticing that the dis-
persion coefficient in the flow direction decreases when col-
lisions between the porous medium and percolating particles
are less dissipative. This can be easily explained by consid-
ering a single particle falling down toward a pore. The par-
ticle trajectory must be aligned with the pore hole to pass
through it without bouncing around. If not, the larger the
restitution coefficient is, the more important the rebounds of
this particles are. In such a case, longitudinal crossing of
individual pore is more difficult and leads to a decrease in
the longitudinal dispersion coefficient.

Now, we analyze the influence of the restitution coeffi-
cient e2 between two moving particles on the particle disper-

sion. Figure 16�a� shows the variation in the transverse dis-
persion coefficient D� versus the coefficient of restitution e2.
We could notice that the larger the coefficient of restitution
e2 is, the more the particles disperse laterally. But, due to
relatively large error bars, it not possible to confirm strongly
this increase in D� with e2. It could be interesting to perform
a set of simulations for larger values of N.

On the other hand, if we consider Fig. 16�b�, which rep-
resents the evolution of the longitudinal dispersion coeffi-
cient D
 versus the restitution coefficient, we can observe a
small evolution of this coefficient with e2. Despite first point
of Fig. 16�b�, a small decrease in D
 with e2 can be observed.

During collisions, the kinetic energy of moving particles
is controlled by the ability of materials to restore energy. As
we have shown in the present section, differences in energy
dissipation act directly on particle dispersion. More pre-
cisely, previous results shows importance of the restitution
coefficient e1 on longitudinal dispersion. In fact, during flow
of particles, not only energy dissipation but the particle en-
ergy itself controls the way particles are dispersed in the
porous medium.

E. Effect of particle density �s

Finally, to complete our analysis of dispersion energy, we
will now consider the influence of �s: the density of particles.
We have tested how the particle dispersion is affected by the
density of the small moving particles �s. Figure 17 shows the
dependency of the two dispersion coefficients, D
 and D�, on
�s. We can notice that the longitudinal dispersion D
 in-
creases, while the transverse dispersion D� decreases with
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the increasing of the density of the small moving particles.
For smaller density, gravity force is reduced and the par-

ticles can explore laterally the porous medium more easily.
On the other side, when the density of moving particles is
increased, the gravity force is more important and the dis-
tance along the flow direction, between particles that pass a
grain layer and ones that do not, is longer. These consider-
ations explain both the decrease in D� and the increase in D


with increasing density of small particles. These results con-
firm assumptions made in Sec. IV A when the steel beads
were replaced with the glass beads. The differences of be-
havior observed in Fig. 7 for glass or steel beads can be
explained by the combination of the two competing effects
coming from the density difference in one way and the en-
ergy restitution coefficient in the other way. The glass beads
have a lower density but higher e2 restitution coefficient than
steel ones �46�. So, e1 is also higher for a collision between
two glass particles than for a collision between a glass par-
ticle and a steel one. By considering Figs. 15–17, we can
clearly understand how D� is affected when we replace steel
beads with glass ones. The two competing effects of �s and
energy restitutions give us the explanation about why steel
beads have a smaller D� than the glass beads, as observed
experimentally in Fig. 7.

VI. CONCLUSION

In this paper, we have performed a large series of experi-
mental and numerical analyses in order to determine the cru-
cial parameters which control the longitudinal D
 and trans-
verse D� dispersion coefficients in our spontaneous
percolation problem. Our experimental setup was modeled as
close as possible by our numerical simulations.

Our results show that flow of a particle blob through a
packing of larger sphere is a diffusive process. So, we have
extended the observations of Ippolito et al. �12� on diffusive
behavior to the case where several particles transit at the
same time in a porous structure. The first parameter which
controls the blob dispersion is the number N of particles.
This parameter was the first investigated, and we have ex-
perimentally and numerically put in evidence that dispersion
coefficients increase with the number of particles flowing
simultaneously in the porous medium. With numerical simu-
lations, differences in evolution of dispersion coefficients
with N for different size ratio D /d have been observed. This
led us to perform investigations on the influence of the pa-
rameter D /d on dispersion properties. In a general manner,
when size ratio D /d increases, pores crossing are made
easier whatever is the considered space direction. This result
in observations of an increase in D� and a decrease in D


with D /d. Moreover, asymptotic value independent on D /d
seems to be reached for size ratio greater than 12. The pa-
rameter D /d, combined with N in the parameter Np, controls
the probability of particles to move freely in the porous
space. Dispersion of particles results from collisions with the
porous matrix and with other moving particles. It is possible
to characterize these collisions with the use of energy resti-
tution coefficient. The first one, whose influence was inves-
tigated was e1, the restitution coefficient between a moving

bead and a sphere of the porous medium. Results presented
in Sec. V D show that longitudinal dispersion decreases
when energy restitution increases, resulting from more diffi-
culties to lost kinetic energy. Our results have also shown
that transverse dispersion does not depend on e1. This result
is very important and illustrates collective effects during the
flow of a particle blob. Indeed, Bridgwater et al. �10� showed
that the transverse dispersion of an isolated particle increases
with this restitution coefficient. Here, the nondependency of
D� on e1 is probably due to some jamming effects which
restrict the transverse exploration. Quite similar dependen-
cies were observed for dispersion coefficients with e2. Fi-
nally, effect of percolating particle density has been investi-
gated. It has been found that D� decreases and that D


increases when this density increases. This can be easily ex-
plained by considering changes in magnitude of gravity
force. We have experimentally seen that combined influences
of parameters can be observed and can sometimes lead to
difficulties in physical and practical analyses. Thanks to nu-
merical DEM simulations, it was possible to study influence
of parameters separately.

This work deals with a lot of experiments and simulations
to presents comparative and exhaustive results. In order to
summarize the different parameter evolution analysis, Table I
provides the evolutions of the dispersion coefficients when
the different studied parameters �D /d ,N ,e1 ,e2 ,�s� increase.
In addition to its interest in understanding particle size seg-
regation mechanism in a packing of larger spheres, this work
could also be useful to maximize particle diffusion when
attempting to realize homogeneous mixtures by gravity
driven flows.
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TABLE I. Evolution of D
 and D� versus all studied parameters.
In this table, we consider that the parameters in the left column
increase. We should notice that an assumption is made for the evo-
lutions of D
 and D� with Np. In fact, our simulations have shown
a difference of behavior between cases with D /d=10 and ones with
D /d=16 when studying influence of Np on dispersion coefficients.
Regarding results concerning influence of D /d on D
 and D�,
which differ around the threshold value of D /d=12, we can legiti-
mately assume that this threshold ratio separates the distinct evolu-
tions of dispersion coefficients with Np.

D
 D�

D /d�12 D /d�12 D /d�12 D /d�12

D /d ↘ ←→ ↗ ←→
Np�N� ↗ ↗ ←→ ↗
e1 ↘ ←→
e2 ↘ ↗
�s ↗ ↘
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